Practical Java Machine Learning: Projects with Google Cloud Platform and Amazon Web Services

Author: Wickham, Mark
Publisher: APress
Category: Web Programming, Web Services, Programming & Scripting Languages: General, Databases, Computer Science, Artificial Intelligence, Machine Learning
Book Format: Paperback


Build machine learning (ML) solutions for Java development. This book shows you that when designing ML apps, data is the key driver and must be considered throughout all phases of the project life cycle. Practical Java Machine Learning helps you understand the importance of data and how to organize it for use within your ML project. You will be introduced to tools which can help you identify and manage your data including JSON, visualization, NoSQL databases, and cloud platforms including Google Cloud Platform and Amazon Web Services.
Practical Java Machine Learning includes multiple projects, with particular focus on the Android mobile platform and features such as sensors, camera, and connectivity, each of which produce data that can power unique machine learning solutions. You will learn to build a variety of applications that demonstrate the capabilities of the Google Cloud Platform machine learning API, including data visualization for Java; document classification using the Weka ML environment; audio file classification for Android using ML with spectrogram voice data; and machine learning using device sensor data.
After reading this book, you will come away with case study examples and projects that you can take away as templates for re-use and exploration for your own machine learning programming projects with Java.
What You Will Learn
Identify, organize, and architect the data required for ML projects Deploy ML solutions in conjunction with cloud providers such as Google and Amazon Determine which algorithm is the most appropriate for a specific ML problem Implement Java ML solutions on Android mobile devices Create Java ML solutions to work with sensor data Build Java streaming based solutions
Who This Book Is For
Experienced Java developers who have not implemented machine learning techniques before.

Mark Wickham is an active developer and has been a developer for many years, mostly in Java. He is passionate about exploring advances in artificial intelligence and machine learning using Java. New software approaches, applied to the ever expanding volume of data we now have available to us, enables us to create Java solutions which were not before conceivable. He is a frequent speaker at developer conferences. His popular classes cover practical topics such as connectivity, push messaging, and audio/video. Mark has led software development teams for Motorola, delivering infrastructure solutions to global telecommunications customers. While at Motorola, Mark also led product management and product marketing teams in the Asia Pacific region. Mark has been involved in software and technology for more than 30 years and began to focus on the Android platform in 2009, creating private cloud and tablet based solutions for the enterprise. Mark majored in Computer Science and Physics at Creighton University, and later obtained an MBA from the University of Washington and the Hong Kong University of Science and Technology. Mark is also active as a freelance video producer, photographer, and enjoys recording live music. Previously Mark wrote Practical Android (Apress, 2018).

Table Of Contents
1. Introduction IDE Setup - Eclipse IDE Setup - Android Studio Java Setup Machine Learning Performance with Java Importance of Analytics Initiatives Corporate ML Objectives Business Case for Deploying ML Machine Learning Concerns Developing an ML Methodology State of the Art: Monitoring Research Papers

2. Data: The Fuel for Machine Learning Think Like a Data Scientist Data Pre-Processing JSON and NoSQL Databases ARFF and CSV Files Finding Public Data Creating your Own Data Data Visualization with Java + Javascript Project: DataViz

3. Leveraging Cloud Platforms Google Cloud Platform Amazon AWS Using Machine Learning API's Project: GCP API Leveraging Cloud Platforms to Create Models

4. Algorithms: The Brains of Machine Learning Overview of Algorithms Supervised Learning Unsupervised Learning Linear Models for Prediction and Classification Naive Bayes for Document Classification Clustering Decision Trees Choosing the Right Algorithm Creating Your Competitve Advantage

5. Java Machine Learning Environments Overview Choosing a Java Environment Deep dive: The Weka Workbench Weka Capabilities Weka Add-ons Rapidminer Overview Project: Document Classification with Weka

6. Integrating Models
About Mark Wickham
Mark Wickham is an active developer and has been a developer for many years, mostly in Java. He is passionate about exploring advances in artificial intelligence and machine learning using Java. New software approaches, applied to the ever expanding volume of data we now have available to us, enables us to create Java solutions which were not before conceivable. He is a frequent speaker at developer conferences. His popular classes cover practical topics such as connectivity, push messaging, and audio/video. Mark has led software development teams for Motorola, delivering infrastructure solutions to global telecommunications customers. While at Motorola, Mark also led product management and product marketing teams in the Asia Pacific region. Mark has been involved in software and technology for more than 30 years and began to focus on the Android platform in 2009, creating private cloud and tablet based solutions for the enterprise. Mark majored in Computer Science and Physics at Creighton University, and later obtained an MBA from the University of Washington and the Hong Kong University of Science and Technology. Mark is also active as a freelance video producer, photographer, and enjoys recording live music. Previously Mark wrote Practical Android (Apress, 2018).

(BK-9781484239506)

SKU BK-9781484239506
Barcode # 9781484239506
Brand APress
Artist / Author Wickham, Mark
Shipping Weight 0.8200kg
Shipping Width 0.180m
Shipping Height 0.020m
Shipping Length 0.250m
Assembled Length 25.400m
Assembled Height 2.200m
Assembled Width 17.800m
Type Paperback

Be The First To Review This Product!

Help other Augoods users shop smarter by writing reviews for products you have purchased.

Write a product review

More From This Category